Proline: The Distribution, Frequency, Positioning, and Common Functional Roles of Proline and Polyproline Sequences in the Human Proteome

نویسندگان

  • Alexander A. Morgan
  • Edward Rubenstein
چکیده

Proline is an anomalous amino acid. Its nitrogen atom is covalently locked within a ring, thus it is the only proteinogenic amino acid with a constrained phi angle. Sequences of three consecutive prolines can fold into polyproline helices, structures that join alpha helices and beta pleats as architectural motifs in protein configuration. Triproline helices are participants in protein-protein signaling interactions. Longer spans of repeat prolines also occur, containing as many as 27 consecutive proline residues. Little is known about the frequency, positioning, and functional significance of these proline sequences. Therefore we have undertaken a systematic bioinformatics study of proline residues in proteins. We analyzed the distribution and frequency of 687,434 proline residues among 18,666 human proteins, identifying single residues, dimers, trimers, and longer repeats. Proline accounts for 6.3% of the 10,882,808 protein amino acids. Of all proline residues, 4.4% are in trimers or longer spans. We detected patterns that influence function based on proline location, spacing, and concentration. We propose a classification based on proline-rich, polyproline-rich, and proline-poor status. Whereas singlet proline residues are often found in proteins that display recurring architectural patterns, trimers or longer proline sequences tend be associated with the absence of repetitive structural motifs. Spans of 6 or more are associated with DNA/RNA processing, actin, and developmental processes. We also suggest a role for proline in Kruppel-type zinc finger protein control of DNA expression, and in the nucleation and translocation of actin by the formin complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Analyses and Functional Classification of Proline Repeat-Rich Proteins: Potential Role of eIF5A in Eukaryotic Evolution

The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P) does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro) and/or PPG (Pro-P...

متن کامل

Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix

Aromatic rings exhibit defined interactions via the unique aromatic π face. Aromatic amino acids interact favorably with proline residues via both the hydrophobic effect and aromatic-proline interactions, C-H/π interactions between the aromatic π face and proline ring C-H bonds. The canonical aromatic amino acids Trp, Tyr, and Phe strongly disfavor a polyproline helix (PPII) when they are prese...

متن کامل

I-49: Human Y Chromosome ProteomeProject

The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...

متن کامل

Alternative binding modes of proline-rich peptides binding to the GYF domain.

Recognition of proline-rich sequences plays an important role for the assembly of multiprotein complexes during the course of eukaryotic signal transduction and is mediated by a set of protein folds that share characteristic features. The GYF (glycine-tyrosine-phenylalanine) domain is known as a member of the superfamily of recognition domains for proline-rich sequences. Recent studies on the c...

متن کامل

Adsorption of proline amino acid on the surface of fullerene (C20) and boron nitride cage (B12N12): A comprehensive DFT study

In this study, the performance of fullerene (C20) and boron nitride cage (B12N12) as a sensing material for detection of proline was evaluated by density functional theory. For this purpose, the structures of proline, C20, B12N12 and the derived products from the proline adsorption on the surface of nanostructures were optimized geometrically. Then, IR and Frontier molecular orbital calculation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013